If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+2x=49
We move all terms to the left:
1x^2+2x-(49)=0
We add all the numbers together, and all the variables
x^2+2x-49=0
a = 1; b = 2; c = -49;
Δ = b2-4ac
Δ = 22-4·1·(-49)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10\sqrt{2}}{2*1}=\frac{-2-10\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10\sqrt{2}}{2*1}=\frac{-2+10\sqrt{2}}{2} $
| 0=5-9.6t^2 | | 7(1+4m=7(6+3m) | | 50x2-2=0 | | -40=9x+x | | 1+2x+1=3x-3 | | 6x-12=-47 | | 2z-4=5+10z | | 40=17-2y | | -(9-6x)=9 | | -7=7(x-5)+7x | | -2u+4(u+7)=12 | | 12=7(y-4)-3y | | -4=w/8-6 | | -9(u+5)=-63 | | f(0)=6(-10) | | -y+71=237 | | 175-y=102 | | 226=102-v | | 9u+56=17u | | 2p-15=-5p+4p | | 3.7+10m=6.31 | | (18y-18)=16 | | H(x)=15-3x | | -25=-5x=6 | | 10=b-8/8 | | 8-7x=9+5+7x-8 | | -4y+68=26 | | 4(3b+5)=9b+3 | | x-16=-56 | | 11+9v=92 | | 3=y/6-4 | | y=35000(1.04)^8 |